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Abstract
Various test methods are used to characterize the PCB plated-thru-hole reliability. One such method is the 
Interconnect Stress Test (IST).  The results from this test are often used to qualify PCB materials and/or fabricators. 
This paper will discuss how certain statistical analysis techniques may be used to decipher the results, and predict 
capabilities of PCB materials and/or processes.

Introduction
Reliability testing for PWBs is a tricky business.
Prediction of expected part life, and estimates of
expected performance characteristics rely on the use
of statistical techniques.  These tests are destructive,
and therefore must be conducted on a small
subgroup.  The balance that must be struck is to
generate just enough information to be confident of
the predictions, and no more.  Too few samples leads
to large uncertainty about the quality of the
predictions, while too many samples is wasteful.

Background
IST testing has become popular over the past few
years as a way to get accelerated thermal reliability
information.  The expectation is that, relative to
traditional thermal cycling which can take weeks,
IST can be completed within days and with little loss
of resolution.  This paper does not address any
comparisons between IST and the traditional thermal
cycling test.  The focus here is to describe an analysis
technique to utilize the IST results to better ends than
what is typically done.

Although much faster than the traditional thermal
cycling test, IST suffers from the significant
drawback that the sample size is limited by the size
of the test fixture.  The typical sample size is six
coupons, a miserably small sample size for most
people’s comfort.  The time savings are substantial,
so it is desirable to do the best possible given the
constraint.

The most common method for IST analysis is to
collect the cycles to failure results for the six samples
and publish the average.  This seems like a
reasonable course of action, but in reality there are
some assumptions behind it that are not supportable
giving the typical nature of reliability data.
Specifically, reporting an average relies on the
assumption that the underlying distribution from
which the data is pulled is normally distributed.  How
can we be sure that if all boards were tested the

results would fit the normal curve approximation?
One way would be to test all of the boards.  This of
course cannot be done, but it would lead to the most
certainty about the shape of the population and the
resulting expected performance characteristics of the
application.

For the IST reliability situation, there is a natural
constraint for the sample size as the unit holds six
coupons.  Since you can’t test them all, and the unit
holds six, the temptation is to run the six to failure
and report the average.  What is missing is that if the
actual underlying population is non-normal, the
predictions about the untested balance of the
population will be misleading.

The question addressed here is:  Given that the
convenient sample size is six, can Weibull analysis
be used to improve upon the reliability information
that can be deduced from the limited data as
compared to the typical conclusions that result from
the normal approximation?

Procedure
To answer the question, the following method is
employed:

1. Gather IST results from a variety of applications
and raw material types.

2. Calculate the best-fit curve for each set of six
results using first the normal assumption and
then the Weibull assumption.

3. Compare the goodness of fit pairwise using the
Anderson-Darling test.

4. Ensure that, given a hypothetical distribution
specifically generated to simulate the typical
Weibull characteristics generated from the IST
test case results, random samples of six would
yield similar goodness of fit data, with results
from the Weibull assumption being statistically
better.

5. Quantify the improvement obtained using the
Weibull assumption.



IST Test Case Data
Data is collected randomly from a broad spectrum of
applications.  In this manner, the specifics of the
board designs and raw material choices are divorced
from the question of the applicability of the analysis
technique.  To simplify the discussion, only results
for which all samples failed prior to the end of the
test are included.  Although the techniques can be
used to accommodate right-censored data where
some of the samples have not failed at the time the
test is stopped, they are not needed to answer the
question of the usefulness of the Weibull
approximation in this situation.  Seventy-two sets of
IST results are included in the analysis to follow.

Fitting Normal and Weibull Curves
Many statistical analysis programs are available that
can be used to fit data.  The program used for this
project is Minitab™.

Fitting the 72 sets of data using the normal
approximation gives three characteristics of interest:
Average, standard deviation and goodness-of-fit.
The average is simply an estimate of the mean time
to failure for the underlying population, while the
standard deviation is a measure of the spread of the
data.  Minitab™ also offers an Anderson-Darling
(AD) calculation as an estimate of the goodness-of-
fit.  The AD calculation quantifies just how closely
the data points cluster around the linearized normal
curve as transformed on the graph.  The test gives
more weight to data at the tail ends of the
distribution, and the lower the number, the better the
data fits the calculated curve.  Figure 1 shows an
example of the Minitab™ output for one set of
samples:
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Figure 1 – Normal Probability Plot, Sample 1

Fitting the data using the Weibull assumptions
requires a bit more explanation.  See figure 2 below
for the Weibull output for the same data used in
figure 1.
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Figure 2 – Weibull Probability Plot, Sample 1

The Minitab™ output gives three statistics:  Shape,
Scale and AD goodness-of-fit.  The first two are
parameters that are used in the Weibull calculations
for describing the resulting curve, similar to how the
average and standard deviation are used to
characterize the normal curve.

The Weibull probability density function is as
follows (*):

f(x) = αβαx(α-1)exp[-(βx)α]

α = shape
β = scale

The function is flexible enough to describe many
common reliability tendencies, and in this application
it tends to generate skewed mound-shaped curves that
tail off to the right.  As an example, the physical
implication is that, relative to the normal curve which
is symmetrical about the mean, there will be a
clustering of samples that fail early and a tendency of
samples that work well to continue to last.  See figure
3 for the Weibull curve for the data in figure 2.
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Figure 3 – Weibull Curve, Sample 1

Notice that the curve does not seem to be all that
different than a typical normal curve.  To determine
if the Weibull approximation does indeed give a
better picture, comparisons are made between the AD



goodness-of-fit on a pairwise basis for the set of 72
IST results.

Comparison of Normal and Weibull Results
The Normal and Weibull statistics are collected in
Appendix A.  In order to determine which
approximation better describes the data, I use a paired
t-test.  Since I know that the lower the AD statistic,
the better the data fits the curve, I use a null
hypothesis where the means of the AD statistics are
the same, with the alternative being that the Weibull
AD statistics are lower.  This amounts to a one-tailed
test.  A control chart of the paired differences is
found in figure 4:
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Figure 4 – Paired Differences

The AD paired difference data is interesting.  There
is a cluster of data close to zero, and then a handful
that seem to be substantially different than the rest.
The upward spikes are instances where the normal
approximation is better, and the downward spikes are
instances where the Weibull approximation is better.
To compare, the t-test results are presented in table 1:

Table 1:  T-Test Results
Paired T-Test and CI: Anderson-Darling Weibull, Anderson-Darling Normal

Paired T for Anderson-Darling Weibull - Anderson-Darling Normal

N      Mean     StDev   SE Mean
Anderson-Dar     72    2.0114    0.2220    0.0262
Anderson-Dar     72    2.0481    0.2367    0.0279
Difference       72   -0.0367  0.1392    0.0164

95% upper bound for mean difference: -0.0093
T-Test of mean difference = 0 (vs < 0): T-Value = -2.24  P-Value = 0.014

The t-test yields a p-value of 0.014, which is
equivalent to saying that there is substantial evidence
to reject the null hypothesis and conclude that the
Weibull approximation gives a better description of
the data than the normal approximation.

To confirm that the unusually high and low data
points found in figure 4 do not substantially influence
the t-test conclusions, I sequentially removed the
unusual data until the following subset of the
pairwise AD differences remained (figure 5):
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Figure 5 – Paired Differences, Clustered

The resulting p-value for the reduced sample set of
61 data points included in figure 5 is 0.047.  This
result is still significant enough to reject the null
hypothesis and conclude that the Weibull
approximation is better.

Confirming the Results
With statistically lower AD measures, it is clear that
for the test cases here, the Weibull calculations give a
better fit to a broad variety of six-sample IST data
than if a normal distribution is used.  Several
questions still remain:

1. Are the AD statistics representative of what
should be expected from random six-sample sets
of a known Weibull distribution of similar shape
and scale?

2. Do the random six-sample sets result in
statistically better fits with Weibull analysis than
with normal analysis?

To explore these ideas, I generated 1000 random data
points in Minitab™ with an intended Weibull
distribution of shape two and scale 250.  The Weibull
probability plot generated from the 1000 random
samples is included in figure 6.
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Figure 6 – Weibull Fit to Weibull Simulation

The AD value for this data is predictably low (0.156)
as the data was created to emulate a Weibull function



of shape 2 and scale 250.  As a comparison, see the
results from the same set of data if tested for a fit
using the normal assumption (figure 7).  
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Figure 7 – Normal Fit to Weibull Simulation

Clearly the data does not sit as close to the line as it
does in figure 6, and the AD value of 4.437 indicates
the significant lack of fit.

Now, with evidence that the complete simulation data
set clearly follows a Weibull distribution and clearly
does not follow a normal distribution, I generated 100
random sets of six samples for analysis.  Following
the same approach as described in the section titled
Fitting Normal and Weibull Curves, I generated the
data set presented in Appendix B.

A summary of the data from Appendix B is provided
in table 2.

Table 2:  Simulation Results
Simulation W Shape W Scale W AD MTTF N Avg N AD
Average 2.87151 258.51 1.96879 231.44 230.862 1.99973

Max 9.57 382 2.432 344 342 2.548
Min 1.26 102 1.789 94 94.2 1.803

Notice that in table 2, a “W” stands for Weibull, an
“N” stands for Normal, and MTTF indicates Mean
Time to Failure.

It should be mentioned that the scale factor
corresponds to the threshold at which 63.2% of the
population will have failed.  To determine the MTTF,
simply find the point on the cumulative distribution
function corresponding to 0.5.  This is done for the
data in Appendix B by straightforward calculation
within Minitab™, but the details are not covered
here.

Several items stand out.  First, although the
simulation data was designed to have a shape of 2
and a scale of 250, and figure 6 shows the data to best
fit a Weibull curve of shape 2.13 and scale 253, the
average Weibull shape for the 100 sets of six was
2.87.  This can be seen graphically in figure 8.
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Figure 8 – Shape for Weibull Simulation Subsets

In addition to the fact that the shape values are higher
than expected, the variation between subsets is also
substantial.  This is a direct result of the challenges of
using such small data sets.

Similar results are seen in the scale data presented in
figure 9.
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Figure 9 – Scale for Weibull Simulation Subsets

Using just six samples at a time, it is reasonable to
expect that scale factors as high as 422 and as low as
95 could be found at any given time.

Finally, the AD results are presented in figure 10.
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Figure 10 – AD for Weibull Simulation Subsets



It is clear that for any given set of six random
samples from the particular known Weibull
distribution used in the simulation, the resulting AD
can be expected to be anywhere between 1.62 and
2.31, with an average at 1.97.  So, the answer to
question number 1 in this section is yes the AD
statistics are within the expected range, but they are
consistently on the high side.  The most likely
explanation for this is that the Weibull
approximation, although reasonable, it is not exact.
To say it another way, the underlying data set does
not quite follow a Weibull distribution.

Now, consider the second question.  Although the
Weibull approximation is not exact for IST data, is it
a better fit than the normal distribution?  To answer
this, consider the same t-test as in the section titled
Comparison of Normal and Weibull Results.  The
results for the t-test are presented in table 3.

Table 3:  Simulation T-Test Results
Paired T-Test and CI: Weibull AD, Normal AD

Paired T for Weibull AD - Normal AD

                  N      Mean     StDev   SE Mean
Weibull AD      100    1.9688    0.1198    0.0120
Normal AD       100    1.9997    0.1321    0.0132
Difference      100  -0.03094   0.06319   0.00632

95% upper bound for mean difference: -0.02045
T-Test of mean difference = 0 (vs < 0): T-Value = -4.90  P-Value = 0.000

With a p-value of 0.000, the conclusion is that for the
known Weibull distribution in the simulation,
Weibull analysis will yield a statistically better fit
than using the normal approximation, even when
using a sample size as small as six.

Implications
From the arguments above there is statistical
evidence to support using Weibull analysis on six-
sample IST results, but how much advantage is
gained?  To answer this, consider the following
control chart for the simulation subsets comparing the
average cycles to failure as calculated first with the
normal approximation, and subsequently by the
Weibull approximation (figure 11).
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Figure 11 – Cycles to Failure Comparison

There is no identifiable difference in the mean (t-test
p-value = 0.479), but there is a slight improvement in
the variation.  The amount of this improvement is
5.4%.  For any given set of six samples, the odds are
that the mean cycles to failure as calculated with
Weibull analysis will be closer to the true population
mean than if calculated using normal analysis. 

Conclusions
Predicting plated thru-hole reliability characteristics
for PWBs is inherently challenging due to the natural
constraints in the IST testing protocol.  Given the
limitation in sample size, a 5.4% improvement in the
ability to predict average cycles to failure can be
gained simply by using Weibull analysis in place of
normal analysis.
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Appendix A

Shape Scale
Anderson-

Darling
Weibull

Normal
Mean

Anderson-
Darling
Normal

3.00 255.7 2.19 228.0 2.29
4.73 275.0 2.04 251.0 2.04

10.27 60.7 2.33 57.3 2.40
1.05 172.0 2.37 168.0 2.79
4.20 243.0 1.92 222.0 1.92
2.60 116.0 1.95 103.0 1.89
2.41 303.0 1.94 268.0 1.99
1.85 56.4 1.98 49.7 2.14
5.88 652.0 1.92 602.0 1.92
6.99 102.0 1.90 95.5 1.92

11.12 307.0 1.84 294.0 1.84
4.95 267.0 1.92 246.0 1.90
3.89 212.0 2.07 192.0 2.08
4.80 153.0 2.22 141.0 2.21
5.70 196.0 1.96 181.0 1.98
3.25 182.0 2.36 162.0 2.29
1.33 226.0 2.15 205.0 2.50
2.36 148.0 1.88 131.0 1.88
3.70 137.0 2.02 124.0 2.07
4.16 350.0 1.96 318.0 1.95
2.60 335.0 2.00 299.0 1.90
0.87 128.0 1.87 139.0 2.35
5.90 166.0 1.85 153.0 1.86
2.59 98.7 2.06 87.3 2.00
3.00 43.4 1.86 38.7 1.92
1.51 194.0 2.48 181.0 2.01
2.38 117.0 1.89 104.0 1.96
4.64 213.0 1.86 194.0 1.88
3.05 156.0 1.86 136.0 1.88
5.57 149.0 1.90 137.0 1.90
3.73 27.7 2.00 25.0 1.96
3.04 257.0 2.02 228.0 2.06
2.62 299.0 1.81 265.0 1.86
6.62 161.0 1.81 150.0 1.83
1.65 204.0 2.02 181.0 2.24
8.12 28.7 1.91 27.0 1.92
8.10 194.0 1.88 183.0 1.89
3.81 258.0 2.15 234.0 2.21
4.29 128.0 2.14 116.0 2.12
6.18 235.0 2.15 219.0 2.13
3.97 212.0 1.79 192.0 1.80
3.16 249.0 1.85 222.0 1.88
1.89 116.0 2.08 104.0 2.01
3.59 147.0 2.07 132.0 2.12
3.88 37.8 2.02 34.0 2.02
2.12 162.0 1.85 143.0 1.89



5.45 218.0 2.17 200.0 2.20
4.84 361.0 1.90 330.0 1.91
1.99 247.0 1.90 218.0 1.90
1.13 114.0 1.96 109.0 2.00
4.53 185.0 1.96 168.0 1.95
3.79 698.0 1.86 628.0 1.87
7.22 276.0 1.95 259.0 1.98
1.02 224.0 2.12 222.0 2.51
1.98 114.0 3.42 105.0 3.11

38.20 45.6 1.86 45.0 1.84
6.77 200.0 2.02 186.0 2.01
1.08 76.9 2.02 74.3 2.47
1.84 68.6 1.96 60.8 2.05
8.04 92.6 1.83 87.2 1.84
4.38 186.0 2.08 169.0 2.07
1.33 185.0 1.86 171.0 1.91
9.57 378.0 1.96 360.0 1.91
2.43 120.0 2.14 106.0 2.29
5.88 99.0 1.91 92.0 1.93
4.46 282.0 2.07 258.0 2.09
3.79 353.0 1.93 319.0 1.97
4.03 179.0 1.87 162.0 1.88
1.47 84.0 1.96 76.0 1.93
1.43 36.3 2.24 32.5 2.52
5.80 355.0 1.90 329.0 1.89
9.60 432.0 1.87 411.0 1.83



Appendix B

Simulation W Shape W Scale W AD MTTF N Avg N AD
C194 3.47 329 2.043 296 295 2.104
C195 3.71 283 2.100 256 254 2.074
C196 2.32 253 2.036 224 223 2.171
C197 1.84 243 1.963 216 215 2.097
C198 2.71 298 1.849 265 264 1.872
C199 2.12 178 1.934 158 157 2.041
C200 2.67 200 2.148 178 177 2.136
C201 2.19 225 1.912 199 200 1.882
C202 3.84 234 1.932 212 212 1.911
C203 1.28 246 1.933 228 229 2.007
C204 2.89 293 1.876 261 260 1.886
C205 2.65 263 1.931 234 233 2.012
C206 2.18 280 2.244 248 247 2.417
C207 3.45 230 1.837 207 206 1.841
C208 2.08 307 2.176 272 270 2.291
C209 3.02 292 1.928 261 260 1.928
C210 4.92 250 1.973 229 230 1.959
C211 3.31 256 1.897 229 228 1.892
C212 2.45 219 1.859 194 193 1.919
C213 3.03 240 2.057 215 213 2.060
C214 3.80 207 1.835 187 187 1.853
C215 2.05 238 1.925 211 210 2.035
C216 2.02 219 1.872 194 195 1.823
C217 4.30 235 1.869 214 213 1.871
C218 2.72 255 1.917 227 227 1.918
C219 1.91 291 1.848 258 258 1.898
C220 3.03 140 2.100 125 126 2.034
C221 2.03 309 1.949 274 272 2.099
C222 3.71 265 2.149 239 239 2.089
C223 2.41 222 1.947 197 196 1.921
C224 2.23 268 1.899 237 236 1.960
C225 4.32 271 1.907 246 246 1.929
C226 3.64 221 1.909 199 199 1.914
C227 3.20 238 2.154 213 214 2.235
C228 2.13 258 2.063 228 227 2.061
C229 4.55 170 2.081 156 155 2.074
C230 2.60 201 1.883 179 178 1.955
C231 2.20 248 1.831 219 219 1.838
C232 2.74 176 2.245 156 157 2.197
C233 2.33 361 1.914 319 318 1.954
C234 3.08 298 1.853 267 266 1.899
C235 4.12 212 2.039 193 192 2.012
C236 3.18 293 2.036 262 261 2.007
C237 3.49 339 1.969 305 305 2.019
C238 2.40 306 1.854 271 270 1.908
C239 2.95 193 1.859 172 171 1.888
C240 1.96 259 2.060 230 228 2.239
C241 2.59 374 2.320 332 335 2.191
C242 2.11 179 1.954 158 158 2.013



C243 1.79 346 1.860 308 308 1.908
C244 3.41 279 2.432 251 251 2.548
C245 6.49 179 2.187 167 167 2.186
C246 1.93 310 1.883 275 274 1.975
C247 3.71 261 1.840 236 235 1.833
C248 2.39 253 1.883 224 223 1.942
C249 2.27 339 1.873 300 298 1.950
C250 2.02 192 1.938 170 169 2.036
C251 2.67 216 1.946 192 191 1.991
C252 3.88 254 2.023 230 230 2.076
C253 4.27 252 1.978 230 229 1.994
C254 2.32 342 1.987 303 302 2.012
C255 3.35 244 2.039 219 218 2.064
C256 2.64 268 1.828 239 238 1.854
C257 2.66 167 1.939 148 147 1.976
C258 1.50 254 1.838 229 230 1.837
C259 1.26 268 1.856 249 250 1.890
C260 2.47 303 1.966 269 268 2.021
C261 1.44 162 2.055 147 150 1.928
C262 5.95 339 1.883 315 314 1.921
C263 3.70 255 1.948 230 230 1.924
C264 3.87 330 1.951 299 298 1.946
C265 4.81 255 2.038 233 232 2.034
C266 2.35 190 2.090 169 168 2.228
C267 1.90 281 2.036 249 247 2.070
C268 2.16 239 1.842 212 211 1.863
C269 2.88 214 1.926 191 190 1.983
C270 1.28 102 2.067 94 94 2.211
C271 2.94 350 1.825 313 312 1.861
C272 3.43 382 2.084 344 342 2.090
C273 2.32 279 1.809 247 246 1.874
C274 2.64 204 1.789 181 181 1.803
C275 1.72 214 1.968 191 189 2.133
C276 2.57 236 1.998 210 209 2.101
C277 1.66 247 1.924 221 222 1.929
C278 2.44 260 1.881 231 230 1.898
C279 2.65 241 1.981 214 213 2.066
C280 2.50 298 1.884 265 264 1.951
C281 2.85 288 1.953 257 256 2.023
C282 1.48 186 1.892 168 167 1.967
C283 5.86 291 1.953 269 268 1.999
C284 2.46 376 2.138 334 332 2.274
C285 2.51 246 1.923 218 217 1.956
C286 2.14 285 2.141 253 253 2.044
C287 9.57 264 2.157 251 249 2.134
C288 2.59 278 1.859 247 246 1.834
C289 2.26 206 2.033 183 184 1.943
C290 2.20 289 1.855 256 255 1.867
C291 2.32 279 1.921 247 246 1.889
C292 2.85 343 1.852 306 305 1.885
C293 1.89 350 2.058 310 314 1.917
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