

Enabling Lower Cost Advanced Automotive Safety Systems Through Hybrid PCB Construction

Outline

- Printed Circuit Board (PCB) requirements for advanced automotive safety systems
- Hybrid PCB construction and benefits
- PCB material processing requirements for hybrid constructions
- Material availability in industry
- Summary

Advanced Automotive Safety Systems

Active Safety Systems

Radar Sensor Portfolio

- 25 GHz Ultra-wide Band Radars
- 24 GHz Narrow-band Radars
- 77 GHz Multi-mode Radars

Supporting

- Blind Spot Detection
- Rear Cross-traffic Alert
- Lane Change Assist
- Forward Collision Warning
- Autonomous Emergency Braking
- Adaptive Cruise Control

Vehicle Radar Classification

Long Range Radar (LRR)

- Range up to 250 m
- Vehicle velocity above 30 km/h to 250 km/h
- Narrow beams to control driving path in front of the car to determine distance of vehicle driving ahead for maintaining minimum safety distance
- Bandwidth below 1 GHz and typical spatial resolution 0.5 m

Short Range Radar (SRR)

- Range up to 30 m
- Speed range from 5 km/h to 150 km/h
- Wide field of view
- Bandwidth below 5 GHz and typical spatial resolution 0.1 m

RADAR Resolution Requirements

Scenarios Requiring High Resolution (wide bandwidth)

- Side Impact
- Cross Traffic Alert
- Narrow Pass Assistant
- Evasion Maneuver
- Pedestrian Protection
- Front Collision Warning
- Proximity Warning and Parking Assistant
- Scenarios Needing Lower Resolution (narrow bandwidth)
 - Adaptive Cruise Control long range
 - Lane Change Assist 24 GHz

Frequency Bands for Automotive Radar

Source: Infineon

isola

Automotive Radar Development

Target is "Accident-free" Driving

DAIMLERCHRYSLER

Mercedes-Benz Frequency Strategy

It is clear that all systems will migrate to the 76 – 81 GHz band in the short to medium term

Active Safety System Development

• Reduced size and improved affordability

Active Safety System Trends

Shift to higher frequencies

- 76 GHz to 81 GHz
- Development ongoing at 140 GHz

Integration of multiple system functions in one chipset

- Radar front end
- Microcontroller

Reduction in system size

- Smaller size offers more options for integration into vehicle front and rear fascia
- Increasing demand for system cost reductions for a widening target market

Desirable PCB Electrical Properties

• Low dissipation factor, Df = tan δ

- Maximize power delivered to antenna
- Achieve desired effective isotropic radiated power (EIRP) with lower input power, P_{in}
- Better s₁₁ characteristics at resonance

Low dielectric constant, Dk

Allows rapid signal propagation

Consistent Df, Dk over operating bandwidth of SRR and LRR

- Provides consistent transmission line impedance
- Prevents phase distortion of waveform (due to frequency dependence on phase velocity)

Consistent Df, Dk over temperature of operation (-40°C to 85°C) and varying humidity

 Eliminates need for compensation for impedance mismatch and attenuation changes over operating range of vehicle

Additional PCB Attributes

Material must have consistent physical properties

- Uniform electrical properties
- Consistent physical properties thickness, Dk, Df
- Uniformity batch-to-batch and within batch

Ease of processing

- Minimum amount of special material treatment for PCB fabrication
- Single cure cycle with parameters consistent with mature products, well established at board shops

Low cost as possible

- Choose sufficient material to satisfy requirements
- Choose material process-compatible with Hybrid PCB construction

Sources of Loss in PCB

- Dielectric Loss
- Conduction Loss

PCB Material Dielectric Loss

 Dielectric materials have polarized molecules that move when subjected to the electric field of a digital signal

$$\begin{array}{c} \swarrow & (1) & (2) &$$

- This motion produces heat loss
- Loss results in signal attenuation that increases in direct proportion to signal frequency

PCB Material Conduction Loss

- The copper contributes to overall loss through the metal's resistive losses
- At high signal frequencies, the current in PCB copper is concentrated within a small depth near its surface (skin effect)
- Reduction in effective cross-sectional area increases the effective resistance

Conductor Surface Roughness

- Conductors on PCBs do not have perfectly smooth surfaces
- Rough copper improves peel strength of laminate
- Maximum peak-peak tooth size varies ~ 2-10 microns
- Surface roughness increases bulk copper resistance 10-50%
- Electrical impact of conductor roughness increases with increasing frequency

Frequency	Skin Depth (Copper)	
50 Hz	9.3 mm	
10 MHz	21 µm	
100 MHz	6.6 µm	
1 GHz	2.1 µm	
10 GHz	0.66 µm	

Copper Foil Plating

Foil is fabricated by plating copper on a drum

Foil Treatment

RTF and VLP Copper Profiles

RTF

Rq=2.6 um, RF=1.85

VLP Rq=0.68 um, RF=1.3

Roughness parameters measured with profilometer

Effects of Surface Roughness

- Increase in capacitance due singular electric fields on surface spikes
- Increase in signal group delay over perfectly smooth
- "Apparent" increase in Dk to match group delay vs frequency characteristics

Automotive Radar PCB Conclusions

- Dissipation factor, Df is typically specified in the range of 0.002 – 0.005 over frequency of operation
- Low profile copper such as VLP2 is necessary to reduce overall loss and eliminate group delay effects versus frequency
- Materials with these attributes come at a premium cost

Hybrid PCB Construction

Hybrid PCB Construction

Multi-layered PCB using dissimilar materials

- FR4 plus HSD optimized material
- FR4 plus RF optimized material

Reasons to use hybrid construction include

- Reduction in overall system cost
- Optimization of electrical properties
- Improvement in reliability* and manufacturability

Application areas where hybrids are used

- Power amplifiers for cellular base stations
- Ku band low noise block down converters
- High-speed data channels PCI Gen 3,4 for example
- Advanced automotive safety systems

Reliability Concerns

- Laminates having good electrical properties for RF/Microwave applications can have high CTE relative to other materials in construction
- This high CTE will cause problems when PCB experiences thermal cycling
 - High CTE material expands at different rate than copper causing delamination
 - Plated through holes undergo stress causing cracking
- Materials in hybrid construction should have well-matched CTEs, reasonably close to that of copper

Cost Savings

- Material for best radar performance comes at a cost premium, so use it only on critical layers
- Hybrid material mix must be compatible and not increase fabrication cost and complexity or reduce yield
- Fortunately, high performance materials are available that make hybrid builds straightforward using well established processes

Process for Maximum Cost Savings

- To realize the greatest cost savings, use materials that process most closely to FR-4
- Additional or more complex steps required in processing can consume cost savings associated with hybrids
 - Plasma etch for microvia plating
 - Use of multiple plasma surface treatment cycles
 - Plasma desmear
 - Time-constrained electroless and soldermask processes
 - Plasma to promote bond of photo resist for secondary imaging

Transmission Line Guidelines

- For asymmetric stripline it is best to have the thinnest layer being low loss
- Asymmetric stripline can be more susceptible to cross-talk if Dks differ. This is mitigated by slight increase in gap, g
- Microstrip takes full advantage of low-loss materials

Hybrid Construction for Automotive Radar

	Structure (Stack up)			Thickness	
Layer	Туре		Cu weight (oz)	Construction	after lam (mil)
1	TOP		0.5 + plating		2.1
	core			Astra 5mil	5.0
2	V2		0.5		0.6
	prepreg			370HR	7.2
3	V3		1		1.3
	core			370HR	18.0
4	V4		1		1.3
	prepreg			370HR	7.2
5	V5		0.5 + plating		2.1
					44.7

This hybrid structure utilizes high performance material where necessary and standard process-compatible materials to reduce cost

This construction processes like standard FR-4

Conclusions

- Hybrid constructions offer significant cost savings when the correct materials are used
- The savings realized is more than just material costs as processing costs can be different depending on the high performance PCB material utilized
- For best results consult the PCB manufacturer for guidance

